‘Go-between’ study: walk times and talk times
نویسندگان
چکیده
منابع مشابه
A Random Walk with Exponential Travel Times
Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملa random walk with exponential travel times
consider the random walk among n places with n(n - 1)/2 transports. we attach an exponential random variable xij to each transport between places pi and pj and take these random variables mutually independent. if transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملA Randomized Comparative Study Between Three Times And Five Times Weekly Phototherapy With NBUVB For Treating Chronic Plaque Type Psoriasis
Background: Psoriasis is a chronic inflammatory skin disease that is estimated to affect 0.6% to 4.8% of the general population. The optimum number of NB-UVB phototherapy sessions is yet to be determined. The aim of this study was to compare therapeutic effects of NB-UVB in treating chronic plaque type psoriasis three times weekly vs. five times weekly. Materials and Methods: This study was des...
متن کاملCut times for Simple Random Walk Cut times for Simple Random Walk
Let S(n) be a simple random walk taking values in Z d. A time n is called a cut time if S0; n] \ Sn + 1; 1) = ;: We show that in three dimensions the number of cut times less than n grows like n 1? where = d is the intersection exponent. As part of the proof we show that in two or three dimensions PfS0; n] \ Sn + 1; 2n] = ;g n ? ; where denotes that each side is bounded by a constant times the ...
متن کاملCut times for Simple Random Walk
Let S(n) be a simple random walk taking values in Zd. A time n is called a cut time if S[0, n]∩ S[n+ 1,∞) = ∅. We show that in three dimensions the number of cut times less than n grows like n1−ζ where ζ = ζd is the intersection exponent. As part of the proof we show that in two or three dimensions P{S[0, n]∩ S[n+ 1, 2n] = ∅} n−ζ , where denotes that each side is bounded by a constant times the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Anaesthesia
سال: 2016
ISSN: 0003-2409
DOI: 10.1111/anae.13758